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Prediction Selective prediction

Yy
fo: X — RE ‘| don't know”
dolphin || '
cat Selective prediction gives an
grizzly bear || abstain option, it doesn't force a
F angel fish ([l decision but instead takes
chameleon |l model confidence into
lown fish | consideration
ciown  1is
iguana |l
elephant |l In practice, a human would
then identify images that a
5 B i model abstains
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Selective prediction
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Accuracy vs human effort in selective prediction

Baseline accuracy ~————  Correct images

Human labeled
images

# images & —

Selective prediction threshold

e [ow thresholds mean the model s trusted more, thus less human effort
needed to identify all the data but there is more possibility of error
e High thresholds mean the model is trusted less, thus humans ID more data

but quality is easier to guarantee
e Threshold selection is an active area of research, calibrated models make

this easier



Active learning

Learn to sample next data for
human labeling automatically
to optimize performance while
minimizing human effort

Sampling criteria:

e Random
e Uncertainty (Exploit)
e Diversity (Explore)

1. Collect the set of unlabeled instances [

v
[ 2. Human manually labels instances. \

’

{ 3. Train model using new instances |
e w

|

[' 4. Validate the model \\

/;S.top condition "
. achieved?

No

Yes
| v .
( 5. Generate updated model

Human-in-the-loop machine learning: a state of the art, Mosqueira-Rey et al,, Artificial Intelligence Review 2022

Human-in-the-loop machine learning, Munro, Manning Publishing 2020



Active learning via selective prediction
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Active learning based on representations

One example:

e Use the MegaDetector to crop

e Cluster animals based on
visual similarity in new cameras

e Humans ID examples from
each cluster (active learning
criteria)

e (Gets same accuracy with
99.5% fewer labels

_ Thomson's Gazelle

A deep active learning system for species identification and counting in camera trap images, Norouzzadeh, Morris, Beery, et al., Methods in Ecology and Evolution 2021



Role of Human-Al Interaction in Selective Prediction

» Human accuracy decreases
User would see one of the 4 conditions shown here:
image when model results are
Image 40: Al model deferred. presented

Image 6: Al model predicts no animal present.
70

Image 37: Al model deferred, but predicts no animal present.
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Human accuracy (%)

No msgs Defer only Predict only Defer & Predict
Messaging condition

Definitely no animal present O O O O @ Definitely animal present ) ) ) ) )
https://ojs.aaai.org/index.php/AAAl/article/view/20465
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Role of Human-Al Interaction in Selective Prediction

Human accuracy decreases
User would see one of the 4 conditions shown here:
image 1 when model results are
Image 40: Al model deferred. p rese nted
Image 6: Al model predicts no animal present.
Image 37: Al model deferred, but predicts no animal present. 80
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Confirmation bias

For the Research Grade subset, 95% were Correct, 3% were Uncertain and 2% were Incorrect. The average Precision was 99%.

Accuracy I
Correct : 95%
Uncertain 3% :
Incorect 2% :
Precision 99%
f T T T T T T T T T T 1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

| had actually (not long ago) studied the question of subspecies of Apis mellifera in
Africa and therefore knew, that bees from NE Namibia, SW Zambia and the Zambezi
valley can't be identified to a subspecies, this area is a zone of introgression between
A. m. scutellata and A. m. adansonii.

(My "wisdom" comes from a PHD thesis available for download here: Radloff, S. 1996.
Multivariate analysis of selected honeybee populations in Africa
https:/commons.ru.ac.za/vital/access/manager/Repository/vital:5734/SOURCEPDF?
site_name=Rhodes+University)

Obviously none of the other identifiers was aware of this. And this is when the
confirmation bias sets in - you just agree without actually considering that you do not
know how to identify this taxon.




